Caída libre y tiro vertical

ž
Caída libre 



Un cuerpo tiene una caída libre si desciende sobre la superficie de la Tierra sin sufrir ninguna resistencia originada por el aire. De manera práctica, cuando La resistencia del aire sobre los cuerpos se puede despreciar por ser tan pequeña es posible interpretar su movimiento como una caída libre. La aceleración de la gravedad es una magnitud vectorial cuya dirección está dirigida hacia el centro de la Tierra; además, su valor varía según el lugar, pero para fines prácticos se considera en forma aproximada como: g = ‐ 9.8 m/s2 El signo menos es porque la aceleración de la gravedad está dirigida hacia abajo. Todos los cuerpos ya sean grandes o pequeños, en ausencia de fricción, caen a la Tierra con la misma aceleración. La aceleración gravitacional produce sobre los cuerpos con caída libre un movimiento uniformemente variado. Para resolver problemas de caída libre se utilizan las mismas ecuaciones del MRUA, pero se acostumbra cambiar:

a) la letra a de aceleración por la g que representa la aceleración de la gravedad,

b) y la letra d de distancia por la h que representa a la altura.


Mira más sobre el tema en:



Tiro vertical
El  tiro  vertical  es  un  movimiento  que  se  manifiesta  cuando  un  cuerpo  se  lanza  verticalmente hacia arriba, observándose que su velocidad va disminuyendo hasta  anularse al alcanzar la altura máxima. Inmediatamente inicia su regreso para llegar al  mismo punto donde fue lanzado y adquiere la misma velocidad con la cual partió. De la  misma  forma,  el  tiempo  empleado  en  subir  es  el  mismo  utilizado  en  bajar.  Las  ecuaciones empleadas para este movimiento son las mismas de la caída libre de los  cuerpos, pues también es un MRUA. En el tiro vertical resulta importante calcular la  altura máxima que alcanzará un cuerpo, para ello se usa la ecuación: 
Ejemplo

 Se lanza un cuerpo verticalmente hacia abajo con una velocidad inicial de 7 m/s.
a) ¿Cuál será su velocidad luego de haber descendido 3 s?.
b) ¿Qué distancia habrá descendido en esos 3 s?.
c) ¿Cuál será su velocidad después de haber descendido 14 m?.
d) Si el cuerpo se lanzó desde una altura de 200 m, ¿en cuánto tiempo alcanzará el suelo?.
e) ¿Con qué velocidad lo hará?.
Usar g = 10 m/s².

Desarrollo

Datos:
v0 = 7 m/s
t = 3 s
y = 200 m
h = 14 m
Ecuaciones:
(1) vf = v0 + g.t
(2) y = v0.t + g.t²/2
(3) vf² - v0² = 2.g.h

a) De la ecuación (1):
vf = (7 m/s) + (10 m/s²).(3 s)
vf = 37 m/s
b) De la ecuación (2):
Δh = (7 m/s).(3 s) + (10 m/s²).(3 s)²/2
Δ h = 66 m
c) De la ecuación (3):
vf = √v0² + 2.g.h
vf = 18,14 m/s
d) De la ecuación (2):
0 = v0.t + g.t²/2 - y
Aplicamos la ecuación cuadrática que dará dos resultados:
Cinemática
t1 = 5,66 s
t2 = -7,06 s (NO ES SOLUCION)
e) De la ecuación (3):
vf = √v0² + 2.g.h
vf = 63,63 m/s


 Tomado de;
http://www.fisicanet.com.ar/fisica/cinematica/resueltos/tp11_tiro_vertical_problema01.php

Comentarios

Entradas populares de este blog

Sistema de unidades y conversión de unidades

Dilatación de los cuerpos

Trabajo, energía y potencia